Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.366
Filtrar
1.
Se Pu ; 42(4): 311-326, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566420

RESUMO

Ion chromatography (IC) is a novel high performance liquid chromatographic technique that is suitable for the separation and analysis of ionic substances in different matrix samples. Since 1975, it has been widely used in many fields, such as the environment, energy, food, and medicine. IC compensates for the separation limitations of traditional gas chromatography and high performance liquid chromatography and can realize the qualitative analysis and quantitative detection of strongly polar components. This chromatographic technique features not only simple operations but also rapid analysis. The sensors used in IC are characterized by high sensitivity and selectivity, and the technique can simultaneously separate and determine multiple components. Several advances in IC instrumentation and chromatographic theories have been developed in recent years. IC can analyze various types of samples, including ions, sugars, amino acids, and organic acids (bases). Chinese herbal medicines are typically characterized by highly complex chemical compositions and may contain carbohydrates, proteins, alkaloids, and other active components. They also contain toxic residues such as sulfur dioxide, which may be produced during the processing of medicinal materials. Therefore, the analysis and elucidation of the precise chemical constituents of Chinese herbal medicines present key problems that must be resolved in modern Chinese herbal medicine research. In this context, IC has become an important method for analyzing and identifying the complex components of Chinese herbal medicines because this method is suitable for detecting a single active ingredients among complex components. This paper introduces the different types and principles of IC as well as research progress in this technique. As the applications of IC-based methods in pharmaceutical science, cell biology, and microbiology increase, further development is necessary to expand the applications of this technique. The development of innovative techniques has enabled IC technologies to achieve higher analytical sensitivity, better selectivity, and wider application. The components of Chinese herbal medicines can be divided into endogenous and exogenous components according to their source: endogenous components include glycosides, amino acids, and organic acids, while exogenous components include toxic residues such as sulfur dioxide. Next, the applications of IC to the complex components of Chinese herbal medicines in recent decades are summarized. The most commonly used IC technologies and methods include ion exchange chromatography and conductivity detection. The advantages of IC for the analysis of alkaloids have been demonstrated. This method exhibits better characteristics than traditional analytical methods. However, the applications of IC for the speciation analysis of inorganic anions are limited. Moreover, few reports on the direct application of the technique for the determination of the main active substances in Chinese herbal medicines, including flavonoids, phenylpropanoids, and steroids, have been reported. Finally, this paper reviews new IC technologies and their application progress in Chinese herbal medicine, focusing on their prospects for the effective separation and analysis of complex components. In particular, we discuss the available sample (on-line) pretreatment technologies and explore possible technologies for the selective and efficient enrichment and separation of different components. Next, we assess innovative research on solid-phase materials that can improve the separation effect and analytical sensitivity of IC. We also describe the features of multidimensional chromatography, which combines the advantages of various chromatographic techniques. This review provides a theoretical reference for the further development of IC technology for the analysis of the complex chemical components of Chinese herbal medicines.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Dióxido de Enxofre/análise , Alcaloides/análise , Cromatografia Líquida de Alta Pressão , Íons , Medicina Tradicional Chinesa
2.
Chin J Nat Med ; 22(4): 375-384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658100

RESUMO

The aerial parts of Mosla chinensis Maxim. and Mosla chinensis cv. 'Jiangxiangru' (MCJ) are widely utilized in traditional Chinese medicine (TCM), known collectively as Xiang-ru. However, due to clinical effectiveness concerns and frequent misidentification, the original plants have increasingly been substituted by various species within the genera Elsholtzia and Mosla. The challenge in distinguishing between these genera arises from their similar morphological and metabolic profiles. To address this issue, our study introduced a rapid method for metabolic characterization, employing high-resolution mass spectrometry-based metabolomics. Through detailed biosynthetic and chemometric analyses, we pinpointed five phenolic compounds-salviaflaside, cynaroside, scutellarein-7-O-D-glucoside, rutin, and vicenin-2-among 203 identified compounds, as reliable chemical markers for distinguishing Xiang-ru from closely related Elsholtzia species. This methodology holds promise for broad application in the analysis of plant aerial parts, especially in verifying the authenticity of aromatic traditional medicinal plants. Our findings underscore the importance of non-volatile compounds as dependable chemical markers in the authentication process of aromatic traditional medicinal plants.


Assuntos
Medicamentos de Ervas Chinesas , Lamiaceae , Fenóis , Fenóis/análise , Fenóis/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Lamiaceae/química , Lamiaceae/classificação , Medicina Tradicional Chinesa , Metabolômica/métodos , Espectrometria de Massas/métodos , Componentes Aéreos da Planta/química
3.
Food Chem ; 447: 138743, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452535

RESUMO

Nitraria roborowskii Kom (NRK), with high economic and ecological value, is mainly distributed in the Qaidam Basin, China. However, research on its chemical components and bioactivities is still rare. In this study, its chemical constituents (52) including 10 ß-carboline alkaloids, nine cyclic peptides, three indole alkaloids, five pyrrole alkaloids, eight phenolic acids and 17 flavonoids were identified tentatively using UPLC-triple-TOF-MS/MS. Notablely, one new ß-carboline alkaloid and five new cyclic peptides were confirmed using MS/MS fragmentation pathways. In addition, experiments in vitro indicated that NRK-C had strong maltase and sucrase inhibitory activities (IC50 of 0.202 and 0.103 mg/mL, respectively). Polysaccharide tolerance experiments confirmed NRK-C (400 mg/kg) was associated with decreased postprandial blood glucose (PBG) in diabetic mice. These results suggested that NRK fruit might be used as a functional ingredient in food products.


Assuntos
Alcaloides , Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Camundongos , Animais , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , alfa-Glucosidases/análise , Frutas/química , Sacarase , Alcaloides/análise , Fenóis/análise , Carbolinas/análise , Peptídeos Cíclicos/análise , Medicamentos de Ervas Chinesas/análise
4.
J Sep Sci ; 47(5): e2300922, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471974

RESUMO

Qi-Wei-Tong-Bi oral liquid (QWTB), a famous Chinese medicine preparation composed of seven crude drugs has a good therapeutic effect on rheumatoid arthritis and is widely used in China. However, its chemical composition and quality control have not been comprehensively and systematically investigated. In this study, high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was employed for its chemical profiling. As a result, 100 components were chemically characterized. Additionally, high-performance liquid chromatography coupled with a quadrupole linear ion trap mass spectrometry method was developed to simultaneously quantify nine bioactive components (hyperoside, ononin, quercetin, sinomenine, magnoflorine, gallic acid, protocatechuic acid, monotropein, and cyclo-(Pro-Tyr)) in multiple-reaction monitoring mode. After successful validation in terms of linearity, precision, repeatability, and recovery, the assay method was applied for the determination of 10 batches of QWTB. The results showed that QWTB was enriched in sinomenine and magnoflorine with the highest amount up to hundreds or even thousands of µg/mL, while quercetin, ononin, cyclo-(Pro-Tyr), and hyperoside were much lower with the lowest content below 10 µg/mL. This study work would help to reveal the chemical profiling and provide a valuable and reliable approach for quality evaluation and even pharmacodynamic material basis studies of QWTB.


Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Flavonoides/análise , 60705 , Quercetina/análise , Espectrometria de Massas em Tandem/métodos
5.
J Pharm Biomed Anal ; 243: 116070, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428246

RESUMO

Thromboangiitis obliterans (TAO) is a non-atherosclerotic segmental inflammatory occlusive disease with a high recurrence rate, high disability rate, difficulty to cure, and poor prognosis. It has been clinically proven that Mailuoshutong pill (MLSTP) is an effective traditional Chinese medicine for treating TAO. As MLSTP contains hundreds of chemical components, the quality control of which is a challenge in the development of reliable quality evaluation metrics. This study aimed to evaluate the quality uniformity of MLSTP by establishing a multi-strategy platform. In the present study, the key targets and signaling pathways of MLSTP treating TAO were predicted by network pharmacology. It was further shown by in vivo validation experiments that MLSTP exerted therapeutic effects on TAO by modulating the PI3K-AKT signaling pathway, VEGF signaling pathway, and HIF-1 signaling pathway. In addition, UPLC fingerprints of MLSTP were established and screened for potential Q-markers of MLSTP in combination with network pharmacology results. Six components, including chlorogenic acid, liquiritin, paeoniflorin, calycosin-7-glucoside, berberine, and formononetin, were selected as potential quality markers (Q-markers) in MLSTP. Finally, the quantitative analysis of multi-components by single marker (QAMS) method was established to quantitatively analyze the six potential Q-markers, and the results were consistent with those obtained by the external standard method (ESM). Taken together, the multi-strategy platform established in this study would be conducive to the Q-markers screening and quality control of MLSTP, improving the quality standard of MLSTP and providing favorable assurance for the clinical management of TAO.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Fosfatidilinositol 3-Quinases/metabolismo , Medicina Tradicional Chinesa , Transdução de Sinais , Controle de Qualidade
7.
J Pharm Biomed Anal ; 243: 116069, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460275

RESUMO

Fuke Qianjin capsules (FKQJ) exhibit obvious advantages and characteristics in the treatment of pelvic inflammatory disease. At present, information regarding the in vivo process of FKQJ is lacking, which has become a bottleneck in further determining the therapeutic effect of this traditional Chinese medicine. In the present study, a sensitive, simple and reliable method was developed and validated for the simultaneous quantification of 12 main components (4 flavonoids, 4 alkaloids, 2 phthalides and 2 diterpene lactones) in plasma and seven tissues of rats to study the pharmacokinetic and distribution characteristics of these components in vivo by using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the first time. Plasma and tissue were prepared by protein precipitation with acetonitrile and methanol, followed by its separation on a Waters Acquity UPLC BEH C18 column. The quantification was performed via multiple reaction monitoring (MRM) by a triple quadrupole mass spectrometer under positive electrospray ionization (ESI) mode. The method was validated to demonstrate its selectivity, linearity, accuracy, precision, recovery, matrix effect and stability. For 12 analytes, the low limit of quantification (LLOQs) reached 0.005-2.44 ng/mL, and all calibration curves showed good linearity (r2 ≥ 0.990) in linear ranges. The intra-day and inter-day precision (relative standard deviation) for all analytes was less than 14.96%, and the accuracies were in the range of 85.29%-114.97%. Extraction recoveries and matrix effects of analytes were acceptable. The pharmacokinetic results showed that the main components could be absorbed quickly, had a short residence time, and were eliminated quickly in vivo. At different time points, the 12 components were widely distributed with uneven characteristics in the body, which tended to be distributed in the liver, kidney and lung and to a lesser extent in the uterus, brain and heart. The pharmacokinetic process and tissue distribution characteristics of FKQJ were expounded in this study, which can provide a scientific theory for in-depth development of FKQJ and guide FKQJ use in the clinic.


Assuntos
Medicamentos de Ervas Chinesas , Feminino , Ratos , Animais , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual , Reprodutibilidade dos Testes
8.
Molecules ; 29(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542867

RESUMO

Jieyu Pills (JYPs), a Chinese medicine consisting of 10 herbal elements, have displayed promising clinical effectiveness and low by-effects in the treatment of depression. Prior investigations mostly focused on elucidating the mechanism and therapeutic efficacy of JYPs. In our earlier study, we provided an analysis of the chemical composition, serum pharmacochemistry, and concentrations of the main bioactive chemicals found in JYPs. However, our precise understanding of the pharmacokinetics and metabolism remained vague. This study involved a comprehensive and meticulous examination of the pharmacokinetics of 13 bioactive compounds in JYPs. Using UPLC-Orbitrap Fusion MS, we analyzed the metabolic characteristics and established the pharmacokinetic parameters in both control rats and model rats with attention deficit hyperactivity disorder (ADHD) following oral administration of the drug. Before analysis, plasma samples that were collected at different time intervals after the administration underwent methanol pre-treatment with Puerarin used as the internal standard (IS) solution. Subsequently, the sample was chromatographed on a C18 column employing gradient elution. The mobile phase consisted of methanol solution containing 0.1% formic acid in water. The electrospray ionization source (ESI) was utilized for ionization, whereas the scanning mode employed was selected ion monitoring (SIM). The UPLC-Orbitrap Fusion MS method was subjected to a comprehensive validation process to assess its performance. The method demonstrated excellent linearity (r ≥ 0.9944), precise measurements (RSD < 8.78%), accurate results (RE: -7.88% to 8.98%), and appropriate extraction recoveries (87.83-102.23%). Additionally, the method exhibited minimal matrix effects (87.58-101.08%) and satisfactory stability (RSD: 1.52-12.42%). These results demonstrated adherence to the criteria for evaluating and determining biological material. The 13 bioactive compounds exhibited unique pharmacokinetic patterns in vivo. In control rats, all bioactive compounds except Ferulic acid exhibited linear pharmacokinetics within the dose ranges. In the ADHD model, the absorption rate and amount of most of the components were both observed to have increased. Essentially, this work is an important reference for examining the metabolism of JYPs and providing guidelines for clinical therapy.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Medicamentos de Ervas Chinesas , Ratos , Animais , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão/métodos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Espectrometria de Massas em Tandem/métodos , Metanol , Medicamentos de Ervas Chinesas/análise , Reprodutibilidade dos Testes
9.
Zhongguo Zhong Yao Za Zhi ; 49(1): 141-150, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403347

RESUMO

This study established an HPLC fingerprint and multi-component content determination method for salt-fired Eucommiae Cortex, and evaluated the quality of salt-fired Eucommiae Cortex from different sources using fingerprint similarity evaluation, cluster analysis(CA), principal component analysis(PCA), and orthogonal partial least square discriminate analysis(OPLS-DA). HPLC was launched on a Cosmosil 5C_(18)-MS-Ⅱ column(4.6 mm×250 mm, 5 µm) by gradient elution with a mobile phase of methanol-0.2% phosphoric acid aqueous solution at a flow rate of 1.0 mL·min~(-1), detection wavelength of 238 nm, column temperature of 30 ℃, and an injection volume of 10 µL. The results of fingerprint similarity evaluation for 20 batches of salt-fired Eucommiae Cortex indicated that, except for batch S3 with a similarity of 0.893, the similarity of the other 19 batches was of ≥ 0.919, suggesting good similarity. Fourteen common peaks were calibrated and seven common peaks were identified including geniposidic acid. The mass fractions of geniposidic acid, chlorogenic acid, geniposide, genipin, pinoresinol diglucoside, liriodendrin, and pinoresinol-4-O-ß-D-glucopyranoside were 0.062 0%-0.426 9%, 0.024 9%-0.116 5%, 0.009 5%-0.052 9%, 0.005 5%-0.034 8%, 0.115 9%-0.317 8%, 0.016 4%-0.108 8%, and 0.026 4%-0.039 8%, respectively. Using CA, PCA, and OPLS-DA, the 20 batches of salt-fired Eucommiae Cortex were classified into three categories. Additionally, through the analysis of variable importance in projection(VIP) under OPLS-DA, two differential quality markers, geniposidic acid and chlorogenic acid, were identified. The established HPLC fingerprint and multi-component content determination method is stable and reliable, providing a reference for quality control of salt-fired Eucommiae Cortex.


Assuntos
Quimiometria , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Glucosídeos Iridoides/análise , Cloreto de Sódio
10.
J Sep Sci ; 47(4): e2300803, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403460

RESUMO

Sanguisorba officinalis L. possesses detoxifying, analgesic, and hemostatic properties. After charred processing, S. officinalis exhibits significantly enhanced medicinal effects. Currently, most pharmacokinetic studies focus on the chemical constituents of unprocessed S. officinalis. There is limited research on the comparison of chemical constituents before and after processing. This study established a pharmacokinetic method using ultra-high-performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) to simultaneously determine the levels of four tannin compounds in rat plasma. In negative ion mode, MS/MS detection was performed using an electrospray ionization source. Chromatographic separation was performed using WATERS ACQUITY HSS T3 column (2.1 × 100 mm, 1.8 µm) with a gradient elution of water and acetonitrile as the mobile phase. The pharmacokinetic results indicate that all four compounds reached peak concentrations within 2 h, demonstrating rapid absorption into the bloodstream within the gastrointestinal tract. Notably, the absorption was generally faster in the charred compound of S. officinalis after processing. These four compounds exhibited slower elimination in rat plasma, while in S. officinalis charcoal, the compounds were eliminated more rapidly. The pharmacokinetic results have revealed the pharmacokinetic characteristics of the four analytes in rat plasma which provides valuable reference information for further investigating the in vivo absorption process of S. officinalis after processing.


Assuntos
Medicamentos de Ervas Chinesas , Sanguisorba , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Taninos/análise , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/análise
11.
Anal Sci ; 40(4): 581-597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367162

RESUMO

The domains of cancer therapy, disease prevention, and health care greatly benefit from the use of herbal medicine. Herbal medicine has become the mainstay of developing characteristic agriculture in the planting area increasing year by year. One of the most significant factors in affecting the quality of herbal medicines is the pesticide residue problem caused by pesticide abuse during the cultivation of herbal medicines. It is urgent to solve the problem of detecting pesticide residues in herbal medicines efficiently and rapidly. In this review, we provide a comprehensive description of the various methods used for pesticide residue testing, including optical detection, the enzyme inhibition rate method, molecular detection methods, enzyme immunoassays, lateral immunochromatographic, nanoparticle-based detection methods, colorimetric immunosensor, chemiluminescence immunosensor, smartphone-based immunosensor, etc. On this basis, we systematically analyze the mechanisms and some of the findings of the above detection strategies and discuss the challenges and prospects associated with the development of pesticide residue detection tools.


Assuntos
Técnicas Biossensoriais , Medicamentos de Ervas Chinesas , Resíduos de Praguicidas , Plantas Medicinais , Resíduos de Praguicidas/análise , Medicina Herbária , Medicamentos de Ervas Chinesas/análise , Imunoensaio , Tecnologia
12.
J Ethnopharmacol ; 324: 117770, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38219877

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: To explore the differences in the anti-inflammatory efficacy and mechanisms of the Miao medicine, both raw and after processing, using the "sweat soaking method" of Radix Wikstroemia indica (RWI). AIM OF THE STUDY: The purpose of this study was to explore the differences in the anti-inflammatory efficacy and mechanism of action before and after the processing of the Miao medicine (RWI) using the "sweat soaking method." MATERIALS AND METHODS: Network pharmacology technology was used to construct the "drug-component target-pathway-disease" network, and the main anti-inflammatory pathways of RWI were identified. Rat models of collagen-induced arthritis were established. The changes in body weight, swelling rate of the foot pad and ankle joint, arthritis index, thymus index, spleen index, pathological changes of the ankle joint, and the content of inflammatory cytokines (IL-1ß, IL-2, IL-6, IL-10, TNF-α, and NO) were used as indices to evaluate the effect of RWI on rats with collagen-induced arthritis before and after its processing. Plasma and urine samples were collected from the rats, and the potential biomarkers of, and metabolic pathways underlying the anti-inflammatory effects of RWI before and after processing were identified using 1H-Nuclear magnetic resonance metabolomics combined with a multivariate statistical analysis. RESULTS: Eleven key anti-inflammatory targets of IL6, IL-1ß, TNF, ALB, AKT1, IFNG, INS, STAT3, EGFR, TP53, and SRC were identified by network pharmacology. The PI3K-Akt signaling pathway, steroid hormone biosynthesis, arginine biosynthesis, arginine and proline metabolism, tryptophan metabolism, and other pathways were mainly involved in these effects. Pharmacodynamic studies found that both raw and processed RWI products downregulated inflammatory factors in rats with collagen-induced arthritis and alleviated the pathological changes. A total of 41 potential pathways for the anti-inflammatory effects of raw RWI products and 36 potential pathways for the anti-inflammatory effects of processed RWI products were identified by plasma and urine metabolomics. The common pathways of network pharmacology and metabolomics were steroid hormone biosynthesis, arginine biosynthesis, arginine and proline metabolism, and tryptophan metabolism. CONCLUSIONS: The anti-inflammatory effect of RWI was mainly related to the regulation of steroid hormone biosynthesis, arginine biosynthesis, arginine and proline metabolism, and tryptophan metabolism. Finally, the "sweat soaking method" enhanced the anti-inflammatory effect of RWI.


Assuntos
Artrite Experimental , Medicamentos de Ervas Chinesas , Wikstroemia , Ratos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Suor/química , Fosfatidilinositol 3-Quinases , Triptofano , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/análise , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Arginina , Esteroides , Hormônios , Prolina
13.
J Sep Sci ; 47(1): e2300786, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234027

RESUMO

Epimedium (EM) and Psoraleae Fructus (PF) are a traditional herb combination often used as a fixed form to treat osteoporosis disease in the clinic. However, the intricate interactions of this pair remain unknown. In our study, we undertook a comprehensive examination of their compatibility behaviors. Concurrently, a precise and sensitive quantitation method was successfully developed and validated using liquid chromatography-tandem mass spectrometry for the determination of 12 components. This method was applied in analyzing herbal extracts and biological samples (both in the portal vein and systemic plasma), which was also used to study the pharmacokinetics of the herb pair. The results indicated that the combination of EM and PF enhanced the dissolution of chemical components from PF in extracts, but it had a negligible influence on the contents of the components from EM. On the contrary, the in vivo exposure of the lowly exposed EM flavonoids significantly increased following the combination of EM and PF, whereas the highly exposed psoralen and isopsoralen were greatly reduced. These interactions might be crucial for the synergy and toxicity reduction of the herbal pair in disease treatment, which pave the way for further exploration into the clinical application and pharmacological mechanisms of EM and PF.


Assuntos
Medicamentos de Ervas Chinesas , Epimedium , Ratos , Animais , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Administração Oral
14.
J Sep Sci ; 47(1): e2300826, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234028

RESUMO

In traditional Chinese medicine, the two commodity forms of Cassiae Semen Raw and Prepared Cassiae Semen, exert different clinical applications, in which Prepared Cassiae Semen is commonly used to treat liver and eye diseases. However, the material basis of Raw and Prepared Cassiae Semen remains unclear due to the limited studies on their overall composition and metabolism in vivo. In this study, an integrated analysis strategy based on ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry was established to systematically screen the prototype and metabolite constituents of Raw and Prepared Cassiae Semen. Automatic matching analysis of metabolites was performed on Compound Discoverer software based on the function of predicting metabolites. Using this strategy, a total of 77 compounds in Raw Cassiae Semen and 71 compounds in Prepared Cassiae Semen were identified. Furthermore, in vivo study, 46 prototype components and 104 metabolites from the Raw Cassiae Semen group and 41 prototype components and 87 metabolites from the Prepared Cassiae Semen group were unambiguously or preliminarily identified in mice (plasma, urine, feces, eye, and liver). This is the first study of chemical component analysis and in vivo metabolite profiling of Raw and Prepared Cassiae Semen.


Assuntos
Medicamentos de Ervas Chinesas , Camundongos , Animais , Medicamentos de Ervas Chinesas/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Sementes/química
15.
J Sep Sci ; 47(1): e2300615, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234033

RESUMO

Simiao pill is one of the most commonly used prescriptions in traditional Chinese medicine for the treatment of hyperuricemia and gout. However, methods based on more accurate and comprehensive qualitative and quantitative analyses of the active ingredients are not yet perfect due to limited methodology. This not only hinders the elucidation of the pharmacological mechanism of Simiao pill, but also its comprehensive clinical development and utilization. In this study, we employed ultra-high-performance liquid chromatography-Q Exactive Orbitrap-mass spectrometry technology to perform rapid analysis and identification of the chemical constituents in Simiao pill. A total of 101 chemical components were identified, including 26 alkaloids, 15 terpenoids, 11 flavonoids, eight steroids, six fatty acids, five limonoids, four saponins, five phenylpropanoids, and 21 other compounds. In addition, we established a new method by high-throughput ultra-high-performance liquid chromatography-Q Exactive Orbitrap-mass spectrometry combined with ultra-high-performance liquid chromatography-triple quadrupole-tandem mass spectrometry technology for quantification of 14 main active ingredients, such as adenosine (1), phellodendrine (2), mangnoflorine (3), ß-ecdysterone (4), 25R-inokosterone (5), 25S-inokosterone (6), jatrorrhizine (7), palmatine (8), chikusetsu saponin IVa (9), limonin (10), atractylenolide III (11), atractylenolide I (12), obacunone (13), and atractylenolide II (14) in Simiao pill. This work laid a foundation for further analysis and quality control of effective components in Simiao pill.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa , Flavonoides/análise
16.
J Sep Sci ; 47(1): e2300583, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234034

RESUMO

Aconite is the processed product of the seed root of Aconitum carmichaelii Debx. Aconite is a commonly used traditional Chinese medicine, which is generally used after processing. Black aconite, light aconite, and salted aconite are three different processed aconite products. They have the effects of restoring yang and saving energy enemy, dispersing cold, and relieving pain. However, clinical aconite poisoning cases have frequently been reported. In our study, we investigated the effects of three different processed aconite products on the changes of metabolites in vivo. A total of 42 rats were randomly divided into seven groups with six rats in each group. After three consecutive days of intragastric administration of 2.7 g/kg of the aconite-processed product, rat serums were obtained. The rat metabolites were detected using liquid chromatography-tandem mass spectrometry. The altered metabolites related to aconite-processed products were discovered by statistical analysis using metaboanalyst software. Our study is the first time to comprehensively evaluate the effects of three different processed aconite products on rat metabolites based on pseudotargeted metabolomics.


Assuntos
Aconitum , Medicamentos de Ervas Chinesas , Ratos , Animais , Aconitum/química , Medicamentos de Ervas Chinesas/análise , Raízes de Plantas/química , Medicina Tradicional Chinesa , Cromatografia Líquida , Metabolômica/métodos
17.
Phytomedicine ; 124: 155260, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176264

RESUMO

BACKGROUND: Ji-Ming-Shan (JMS) is a traditional prescription used for patients with rheumatism, tendons swelling, relief of foot pain, athlete's foot, diuresis, gout. Although many studies have investigated the active compounds in each herb, the functional mechanism behind its therapeutic effect remains unclear. STUDY DESIGN: Metabolic cages for sample collection. The serum components obtained from the experimental animals were analyzed using LC-MS/MS. Furthermore, cross-analysis using the software MetaboAnalyst and Venn diagrams were used to investigate chronopharmacology of JMS in the animal models. PURPOSE: The aim of this study is to analyze the diuretic effects of JMS and to explore their chronopharmacology involved in organ regulation through four-quarter periods from serum samples of rat models. METHODS: Metabolic cages were used for collecting the urine samples and PocketChem UA PU-4010, Fuji DRI-CHEM 800 were used to examine the urine biochemical parameters. The serum components were identified through ultra-performance liquid chromatography-quadrupole time-of-flight (UPLC-Q-TOF) with a new developed method. Cross analysis, Venn diagram, MetaboAnalyst were used to investigate the key biomarker and major metabolism route with the oral administration of the drug. RESULT: JMS significantly changed the 6 h urine volume with no observed kidney toxicity. Urine pH value ranges from 7.0 to 7.5. The chronopharmacology of JMS diuresis activity were 0-6 and 6-12 groups. UPLC-Q-TOF analyses identified 243 metabolites which were determined in positive mode and negative mode respectively. With cross analysis in the Venn diagram, one key biomarker naringenin-7-O-glucoside has been identified. Major metabolic pathways such as 1: Glycerophospholipid metabolism, 2: Primary bile acid biosynthesis, 3: Sphingolipid metabolism, 4: Riboflavin metabolism, 5: Linoleic acid metabolism, 6: Butanoate metabolism. CONCLUSION: JMS significantly changed the urine output of animals in the 0-6 and 6-12 groups. No change in urine pH was observed and also kidney toxicity. A new UPLC-Q-TOF method was developed for the detection of the metabolites of JMS after oral administration. The cross analysis with Venn diagram and identified the key biomarker of JMS namely naringenin-7-O-glucoside. The results showed that six major pathways are involved in the gastrointestinal system and the liver. This study demonstrated the capability of JMS prescription in the regulation of diuresis and identified a key biomarker that is responsible for its therapeutic effect.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Humanos , Animais , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Diurese , Biomarcadores , China
18.
Bioorg Chem ; 143: 107052, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171154

RESUMO

Eucommiae Cortex is one of important traditional Chinese medicines (TCMs) used in Asia for preventing and treating osteoporosis induced by estrogen deficiency. However, the low exposure of prototype components in Eucommiae Cortex in vivo is difficult to interpret its efficacy. Under the guidance of UPLC-Q/TOF-MS, 42 metabolites including 32 lignans and 10 phenolics, 21 of which were new compounds, were isolated from rat urine and feces after oral administration of aqueous extract of E. ulmoides Oliv. by various chromatographic techniques. Their structures were determined based on extensive physicochemical analyses and spectral data. Their absolute configurations were determined by experimental and calculated ECD spectra, along with the calculated NMR with DP4 evaluation. Additionally, all isolated metabolites were evaluated for their estrogen-like activities, and there are 15 metabolites having estrogen-like effects after assessing influences in MCF-7 cells. Further, Dual Luciferase Reporter Gene Assay was used to determine their activation with estrogen receptor, M10 and M11 mixtures, M14, M19, M33, M27, M31, M38-M41 could activate ERα, and M19 and M41 could activate ERß. These results not only clarify the pharmacological substances of Eucommiae Cortex, but also provide a basis for guiding its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Lignanas , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicina Tradicional Chinesa , Estrogênios/farmacologia , Lignanas/farmacologia
19.
J Sep Sci ; 47(2): e2300788, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286727

RESUMO

Fufang Xiling Jiedu capsule (FXJC), a traditional Chinese medicine that evolved from "Yinqiao Powder", is widely used for the treatment of cold and influenza. However, due to a lack of in vivo metabolism research, the chemical components responsible for the therapeutic effects still remain unclear. Hence, this study aimed to describe the metabolic profiles of the FXJC in rat plasma, urine, and feces. A combined data mining strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was employed and 201 xenobiotics, including 117 prototype components and 84 metabolites were detected. Phenolic acids, flavonoids, triterpenes, and lignans were prominent ingredients absorbed in vivo, and the major metabolic pathways of the detected metabolites were glucuronidation, sulfation, methylation, and oxidation. This is the first systematic study on the metabolism of the FXJC in vivo, providing valuable information for future studies on the efficacy, toxicity, and mechanism of the FXJC.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão/métodos , Administração Oral , Medicamentos de Ervas Chinesas/análise , Metaboloma
20.
J Sep Sci ; 47(2): e2300201, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286733

RESUMO

WenDanTang (WDT) is a Chinese herbal formula used to treat various diseases, including neurodegenerative diseases. However, the neuroprotective metabolic pathways and the components involved in this process are not fully understood. In this study, we examined the neuroprotective metabolic pathways of WDT in rat brains using cerebrospinal fluid metabolomics and ultra-high-performance liquid chromatography-high-resolution mass spectrometry. Twelve rats were randomly divided into a WDT (administrated with WDT solution) and a control group. The ultra-high-performance liquid chromatography technique was used to explore the components of the WDT solution and cerebrospinal fluid, and secondary mass spectra of cerebrospinal fluid were used to identify possible brain-incorporating components after WDT. The results of the differential metabolism analysis showed that eight metabolites were typically altered (all p < 0.05). By comparing the secondary mass spectra of the cerebrospinal fluid of rats and WDT solution, two possible brain-incorporating components of WDT, stachydrine and α-methoxyphenylacetic acid, were identified. The data also suggested that WDT affects nucleotide metabolism, glutathione metabolism, and B-vitamin metabolic pathways, the central differential metabolic pathways. These data suggest that WDT protects neurons through its active components, such as stachydrine, and regulates biochemical metabolism to affect the brain's energy metabolism and antioxidant capacity.


Assuntos
Medicamentos de Ervas Chinesas , Metabolômica , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , 60705 , Medicamentos de Ervas Chinesas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...